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This paper builds on our claim that most vortical structures in transitional and 
turbulent flows are partially polarized. Polarization is inferred by the application of 
helical wave decomposition. We analyse initially polarized isolated viscous vortex rings 
through direct numerical simulation of the Navier-Stokes equations using divergence- 
free axisymmetric eigenfunctions of the curl operator. Integral measures of the degree 
of polarization, such as the fractions of energy, enstrophy, and helicity associated with 
right-handed (or left-handed) eigenfunctions, remain nearly constant during evolution, 
thereby suggesting that polarization is a persistent feature. However, for polarized 
rings an axial vortex (tail) develops near the axis, where the local ratio of right- to left- 
handed vorticities develops significant non-uniformities due to spatial separation of 
peaks of polarized components. Reconnection can occur in rings when polarized and 
is clearly discerned from the evolution of axisymmetric vortex surfaces; but 
interestingly, the location of reconnection cannot be inferred from the vorticity 
magnitude. The ring propagation velocity U p  decreases monotonically as the degree of 
initial polarization increases. Unlike force-balance arguments, two explanations based 
on vortex dynamics provided here are not restricted to thin rings and predict reduction 
in U p  correctly. These results reveal surprising differences among the evolutionary 
dynamics of polarized, partially polarized, and unpolarized rings. 

1. Introduction 
Vortex rings without swirl (i.e. azimuthal flow) have been studied extensively, but 

little is known about vortex rings with swirl. This latter flow is of interest since we 
believe it can help us understand axisymmetric vortex breakdown, as also noted by 
Shariff & Leonard (1992), and has distributed vorticity with non-zero helicity (Moffatt 
1969). However, starting with the pioneering work of Hicks (1899), research on rings 
with swirl has mostly been limited to obtaining steady solutions of the Euler equations 
(Moffatt 1988 ; Turkington 1989), except for some recent simulations specifically 
designed to address the question of a possible finite-time singularity in the Euler 
equations (Grauer & Sideris 1991 ; Pumir & Siggia 1992a, b). Our focus is on the 
dynamics of rings with helical vortex lines. 

In order to define polarization and understand its relevance to turbulent flows, it is 
necessary to consider the generalized Helmholtz theorem given by Moses (1971) or the 
equivalent complex Helical Wave Decomposition (HWD) of Lesieur (1990), which 
allows decomposition of a three-dimensional vector field into three components : 
potential part, ‘left-handed’, and ‘right-handed ’. The last two are unique, Galilean 
invariant and their sum equals the solenoidal part of the vector field. HWD is based 
on eigenfunctions of the curl operator, such that the right-handed component is a 
superposition of eigenmodes with positive eigenvalues, while the left-handed 
component is a linear combination of eigenmodes with negative eigenvalues. The two 



24 D .  Virk, M .  V .  Melander and F. Hussain 

classes of eigenmodes differ in the helical twist of the vector lines (e.g. vortex lines). In 
the one with negative eigenvalues, the vector lines are left-handed helices, and in the 
other they are right-handed helices - hence their names. Equivalently, we also refer to 
these components as left or right polarized. In a vorticity field free of helically twisted 
vortex lines, the two polarized components are everywhere equal in magnitude. We 
have used HWD to analyse flow fields obtained via three-dimensional direct numerical 
simulations, such as circular jets (Melander, Hussain & Basu 1991). These analyses 
strongly suggest that partially polarized structures are a common feature in most 
transitional and turbulent flows, and that they are generated during transition to 
turbulence. We view such polarized vortical structures as essential building blocks of 
turbulent flows. A study of the evolution and dynamics of helical vortical structures is 
therefore an obvious avenue for understanding three-dimensional vortical flows and 
their modelling. Poor understanding of the dynamics of both fully and partially 
polarized vortical structures suggests a detailed study of isolated polarized structures 
before interactions of such structures can be addressed. 

One of the simplest isolated polarized structures with non-trivial evolution is an 
axisymmetric ring with swirl, which can be easily produced in a laboratory for 
experimental verification of analytical and numerical results. Contrary to Widnall, 
Bliss & Zalay’s (1971) assertion, such rings may occur naturally as coherent structures 
in circular jets with small swirl. Note that polarized rings are a subclass of rings with 
swirl. Although polarized rings always have swirl (see figure 1 a), vortex rings with swirl 
are not necessarily polarized. Two examples to illustrate this point are shown in figure 
1 (b,  c). In the first, the axial vortex induces azimuthal flow inside the ring, but the ring 
is not polarized because the vortex lines are circular and not helical. In the second, a 
toroidal vorticity sheath induces swirl in the ring, yet the ring has circular vortex lines. 

Axisymmetric rings are an optimum choice for capturing general three-dimensional 
features, as they allow easy interpretations. Unlike two-dimensional (Cartesian) flows, 
where the vortex lines extend to infinity, vortex lines in rings are confined to a compact 
region. Such vorticity distributions imply finite linear and angular impulses and their 
conservation, finite energy, and vanishing circulation in any plane cutting across the 
entire flow-as is the case in fully three-dimensional flows. In the absence of 
polarization, all vortex lines are circular and vortex stretching is proportional to the 
change in the circumference of a circular vortex line as it approaches or moves away 
from the symmetry axis. However, if the ring is polarized, coupling of swirl and 
meridional flow also causes reorientation of vortex lines, hence additional stretching. 
Another major advantage of axisymmetric flows with swirl is that one family of 
surfaces can be easily extracted, namely the axisymmetric vortex surfaces. This is in 
contrast to general three-dimensional flows, where computational determination of 
vortex surfaces is difficult, if not practically impossible. In addition, viscous 
axisymmetric flows with swirl allow changes in vortex line topology and the generation 
of total helicity. 

Extensive literature on the dynamics of unpolarized rings already exists and can be 
readily used for comparison to analyse the effects of polarization. Even though the 
dynamics of a ring with swirl have not been studied in the past, effects of axial flow on 
the evolution of curved vortex filaments (Saffman 1970; Widnall et al. 1971 ; Moore & 
Saffman 1972) provide an important implication, namely that the propagation velocity 
U p  of a ring with swirl should be lower than that without swirl. These works have put 
forward an explanation (see 4 6) based on force-balance equations derived for thin 
rings. We present two vortex-dynamics-based explanations for U ,  reduction which are 
valid for all rings. In this way, we address Shariff & Leonard’s (1992) claim that Hill’s 
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spherical vortex with swirl (a decidedly thick ring) would actually move faster for weak 
swirl than without swirl. We find this claim to be contrary to our results and show 
analytically that such rings also move slower than their swirl-free counterparts. Other 
important issues addressed are the effects of polarization on the circulation decay, and 
whether the degree ofpolarization (defined later) changes significantly during evolution. 
Also studied are the striking features of the head-tail in a polarized ring, and the 
possible radially outward motion of the head (due to centrifugal force associated with 
swirl) during the entrainment and diffusion phase (Shariff & Leonard). We find that 
polarized ring dynamics differ significantly from the customary vorticity dynamics and 
include many new subtle and illuminating hydrodynamic effects of direct relevance to 
turbulent shear flows. One such effect is vortex reconnection within an isolated ring. 

We have constructed an axisymmetric code based on HWD ($2) to simulate 
polarized rings. We use this code in other studies as well, but give all the details here 
for future reference. This code was validated by quantitative comparison with many 
published results obtained by different numerical methods. After discussing the 

FIGURE 1 .  (a) A schematic of the coordinate system and a typical vortex line on a right-handed 
polarized vortex ring. Note that the vortex line does not close after one revolution around the 
symmetry axis. This is typical behaviour. (b)  Vortex ring around an axial vortex has swirl but it is 
unpolarized: i.e. the vortex lines in the ring are circular and not helical. (c) Vortex ring surrounded 
by toroidal vorticity sheath also has swirl, but it is unpolarized. (d)  Boundary conditions for the 
derivation of the eigenfunctions of the curl operator in axisymmetric geometry. Radial extent of the 
domain is R, and axial extent is L. The circle represents the cross-section of a vortex ring with ring 
radius R and core radius a. 
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coupling between meridional flow and swirl in $3, and the polarized equations in $4, 
the evolution of polarized rings is analysed and compared to unpolarized rings in 4 5.  
Data on U p  and explanations for its reduction by swirl are presented in 96. Finally, key 
results are summarized in $7. 

2. Numerical algorithm and initial conditions 
2.1. Basis functions 

An eigenfunction vector ( V = V, er + V, e, + V, e,, where e,, e, and e, are unit vectors in 
the radial, azimuthal and axial directions, respectively) of the curl operator satisfies 

V x V = A V ,  (1) 

where h E R is the eigenvalue. Taking the curl of (1) and assuming that V is divergence- 
free, we obtain 

Subs ti tuting 
- V 2 V =  h2V. (2) 

V, = $(Y) zs(z>, Y ,  = Rz(r) ZAz)  V, = Rr(r) ZAz), 

into (2) we obtain 

where (k2) is the separation constant. Each of the above equations is a 
Sturm-Liouville problem and thus has real eigenvalues and orthogonal eigenfunctions, 
which form a complete set for square integrable functions in an unbounded domain. 
Imposing the boundary conditions shown in figure 1 (d),  the components of V are 

V, = AJl(qj r )  eikz, V, = BJ,(q, r )  eikz, ( 3  a-c) 

where J1 and J, are Bessel functions of the first kind, k is the axial wavenumber, and 

q, = (A;,,-k2); = /3,/R,; i.e. A j , k  = +[(/3j/R,)2+k2];, 

where Pj (for j = 1,2, ..., N )  are zeros of J1, k = 2 d / L  (for I = 1,2, ..., M ) ,  R, is the 
outer radius of the axisymmetric region being considered, and L is its axial extent. Here 
N and M are the numbers of radial and axial modes retained in our numerical 
simulations. Since (3 a-c) are complex, the velocity and vorticity fields are made real by 
employing conjugate symmetry, e.g. A( -k) = A*&), where ( )* denotes complex 
conjugation. 

By imposing (l), we obtain for k =I= 0, B = (i&/k) A and C = (iq,/k) A .  The 
axisymmetric eigenfunctions of the curl operator can then be written as 

V,  = CJ,(q, r )  eikz, 

(4 a)  
ih. iq. 

V(r ,z ,A, ,J  = V i k  = ( J l ( q ~ r ) e ~ + ~ J ~ ( q j r ) e s + ~ J o ( q , r ) e z ) e i ~ ~ ,  k 

V(r, z, - A,, ,J = vTk = (Jl(q, r) e, - % Jl(qj r> e, + % Jo(qj r )  e,) eikz, (4b) k 
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where superscripts + or - denote the sign of Aj,k.  It is easily verified that 

For k = 0, eigenfunctions can be derived similarly as 
v x Y T k  = hj,k vj+k and v x v j j k  = - h j , k  Vik. 
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V; 0 = JLq, r )  e,+ J o h j  e,7 V; 0 = - J,(q, r )  e, + J O k j  r )  e,. (4c,  4 
We call the eigenfunctions corresponding to negative eigenvalues (Aj* < 0) left-handed 
(denoted by subscript L) and those corresponding to positive eigenvalues (Aj,.k > 0) 
right-handed (denoted by subscript R).  These eigenfunctions represent Beltrami flows 
and are exact solutions of the Euler equations. 

2.2. Algorithm to solve the Navier-Stokes equations using eigenfunctions 
of the curl operator 

In a rotating reference frame, the vorticity transport equation can be expressed as 

( 5 )  
am 
-- - V x ( u x ( w + 2 S Z e Z ) ) - v V x ( V x o ) ,  
at 

where SZ is the rotational velocity of the frame (Q = 0 in this study, but is implemented 
for generality in order to include configurations such as axial vortices with the 
boundary condition u,(Ro, z )  = 0). The vorticity field transforms into Bessel-Fourier 
space as 8 = cj7 e, + 9, e, + GZ e,, where 

and z z  = (Z- l ) L / M ,  1 = 1, ..., A4 are the mesh points of the discrete axial Fourier 
transform. The kernel for Bessel transform is based on the eigenfunctions of the curl 
operator (3a-c).  

The transform ci, of w splits into left- and right-handed parts as 

&@j, k7 t )  = 6, e, + doe, + dz e, = aj, k(t) R j ,  k + bj, k ( t )  i j ,  k7 (7) 

where 

are the normalized Bessel-Fourier transforms of V' and V-, respectively, and aj ,  k, bj, 
are obtained by applying projection operators p+,  P - :  

A consequence of this decomposition is that by inverse Bessel-Fourier transform of 
a,, Ic or bj, we obtain the oR or oL fields separately as follows : 

a. 3. k ( t )  = p+[ci,] = ci,.&k, b,,,(t) = P-[ci,] = ci,-Ltk. (8 a, b) 

1 MI2 N 

OR =- c (aj,k  c:k+a:k ':*,>, (9 a) 

oL=- c (bj,k v i k + b z k  v?:). (9 b) 

2M k=-M/2+1 j=1 

1 MI2 N 

2M k=-M/2+1 j=1 
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In Bessel-Fourier space, the velocity field (a(& k,  t )  = zi, e, + zi, e, + 6, e,) cor- 
responding to the vorticity field k ,  t) is given by 

Inverse Bessel-Fourier transform is used to transform 6 into physical space as follows : 

Also, since V is divergence-free, both u and w are divergence-free at all times. 
The quantity u x w is calculated at z1 and Gauss-Legendre quadrature points used 

to evaluate the integrals in the Bessel transform. Then u x w  is transformed to 
Bessel-Fourier space and projected onto eigenfunctions of the curl operator. Two- 
thirds truncation is used in the axial direction to remove aliasing errors. Note that 
besides the right- and left-handed rotational components of u x o ,  which can be 
projected onto the eigenfunctions of the curl operator, a component corresponding to 
non-zero divergence also exists. The latter determines the pressure distribution 
necessary to maintain a divergence-free velocity field. A consequence of this non-zero 
divergence is that while projecting u x w we need to explicitly transform its radial 
component. This is unlike the case of velocity and vorticity fields, where only azimuthal 
and axial components need to be transformed, because the solenoidality of these 
provides a linear relation between the radial and axial components in the transformed 
space. 

Thus, the vorticity transport equation in transformed space becomes 

These ordinary differential equations are solved using a fifth-order six-stage 
Runge-Kutta scheme (Lambert 1983, p. 143). Computationally, the most expensive 
part of this algorithm is Bessel transform evaluations. Of these, Bessel function 
calculation costs the most, so these were evaluated during initialization and stored for 
later time advancement. Using Cray scientific library routines, very efficient Bessel 
transforms (294MFlops on Cray-YMP) were implemented. Overall performance of the 
code was 172MFlops. The ratio of operation count for our algorithm to that for a 
hypothetical FFT algorithm for both the r- and z-directions is 1 1.5 for the resolution 
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FIGURE 2. Energy spectra for case E (x  = 0, Re = 800) at T = 0 (O), T = 80 (A), T = 150 (0). 

used in the present simulations. This increase in operation count is due to the lack of 
a fast (Bessel) transform in r.  

The boundary conditions shown in figure 1 ( d )  imply that if velocity is expanded in 
V i k  and VLk. the circulation (I', = R,u,(r = R,)) is zero. This is clearly satisfied for 
unpolarized rings. For polarized rings, the radial extent of the domain is chosen large 
enough that uo near the outer boundary is of the order of machine accuracy. 

2.3. Validation of the code 
We reproduced results computed by Stanaway, Cantwell & Spalart (1988). Our results 
on the evolution of Re, U p  (see (31)), and rate of change of energy and dissipation agree 
with those of Stanaway et al. Moreover, the linear impulse deviated from its initial 
value by less than lo-' in our case, while Stanaway et al. reported a deviation of 
The reason for their larger error is that their grid is non-uniform and, as the vortex 
diffused, the vorticity gradient became significant in lower-resolution regions. In our 
uniform grid, resolution improves as the ring diffuses. Another test case used for code 
validation was the evolution of a columnar vortex with non-uniform cross-section 
simulated by Melander & Hussain (1993) using a three-dimensional spectral code with 
periodic boundary conditions. Again, good agreement was obtained. Energy spectra 
along the axial direction shown in figure 2 (after integration in radial direction) for the 
high-Re case E (discussed below) show that the simulations are well resolved. 

2.4. Initial conditions 
Initial conditions are constructed from unpolarized rings with a circular cross-section 
and azimuthal vorticity profile 

2 FLM 260 
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FIGURE 3. Polarized components of a vortex ring. Iw,l in the polarized components is half of that in 
an unpolarized ring and the contours (not shown) are the same as those for IwI with half the 
magnitude. The axial and radial vorticity components are shown by 6 (defined in (16)). The contour 
levels (min., max., increment) are indicated in the figure. 

where 6 = [(r - r,)' + ( z  - z,)']l"/a. This is nearly Gaussian for 6 @ 1 and has a compact 
support; i.e. wo is zero outside the core radius a. 

This unpolarized ring is specified in physical space. We then transform it to 
Bessel-Fourier space and decompose it into left- and right-handed components, uR 
and 01,. A new vortex ring with initial vorticity (wrc) is then constructed as 

@rc = OR + X ~ L ,  

where (1 -x) is the degree of polarization. That is, x = 0 represents a,fully polarized 
right-handed ring, while x = 1 denotes no polarization. The left- and right-handed 
components of (13) are shown in figure 3. wg has the same sign but half the magnitude 
of the original vortex for the two components. Therefore, both components have a 
curvature-induced velocity in the same direction. The opposite polarity arises from 
opposite-signed distributions of w, and w,. This is most clearly seen by considering 
a cross-section of axisymmetric vortex surfaces for the right- and left-handed 
components. To obtain these surfaces, a function t ( r ,  z )  may be introduced such that 

(14) 

= rw,. a t  = -rw,, - aZ ar 
3 

(15) 

In a meridional (i.e. ( r ,  z ) )  plane, (w, e7 +w,  e,) is tangent to contours of constant [. 
Hence, t ( r ,  z) contours are axisymmetric vortex surfaces, which can be found from the 
relation V x use, = w,  e, + w, e, = V x ( [ / r )  e,, i.e. 

5 = rug. (16) 

Figure 3 shows that the left- and right-handed components of 5 have opposite signs. 
The vortex lines wind as left- and right-handed helices for the left- and right-handed 
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Case Re X 
A 800 1 .o 
B 150 1 .o 
C 
D 
E 
F 
G 
H 
I 
J 
K 

800 
800 
800 

150 
150 
150 
150 
150 

800 

0.75 
0.5 
0.00 

0.75 
0.50 
0.25 
0.125 
0.00 

- 1.00 

TABLE 1. List of simulations. In these computations, a / R ,  the ratio of core to ring radii, was 0.2. The 
radial and axial extents of the computational domains were 10 and 15 ring radii, respectively. The 
Bessel transform was evaluated by first dividing the radial extent into 20 subintervals and then using 
a Gauss-Legendre quadrature rule of order 20 in each subinterval. 384 collocation points were used 
in the axial direction, and first 200 zeros of J1 were considered for the Bessel transform. 

components, respectively. The induced uo is into the page for mR and out of the page 
for mL. Note that the polarized 6-components are non-zero even in the region where 
wg vanishes; i.e. u, is non-zero even outside the region where wo is zero. In this study, 
0 < x d 1. However, right-handed-dominated rings can also have x between - 1 and 
0. Such rings would have higher swirl than considered here. Actually, x = - 1 would be 
a torus with only ug and zero wg. 

The linear impulse ( I  = n wo r2 dr dz) of all rings in the present study is the same. 
Therefore, we may think of rings with different x as being generated by a piston with 
the same axial force but different torque acting on it. The Reynolds number (T/v) is 
an independent parameter for such vortices. Initial conditions for all simulations are 
given in table 1. 

2.5. Non-dimensional timescales 
In order to non-dimensionalize time, it is assumed that a line vortex ring formed at 
t = 0 decays self-similarly with peak vorticity decaying as ( l / t )  and lengthscale 
increasing as (vt);, where t is time and v is kinematic viscosity (Stanaway et al. 1988). 
Thus, finite-core rings used in initial conditions for simulations are assumed to be the 
result of self-similar decay of a line vortex. The time origin is defined by comparison 
with the Oseen solution, i.e. to = r/47cvw0, where r is circulation, and w, is defined in 
(1 3) above. Thus, time is non-dimensionalized as 

t ,  = ( t +  to) v/R2.  (17) 

In the following, T denotes dimensional time with origin at the beginning of the 
simulation. The relation for non-dimensional time is t, = (T+0.79577) 2.7833 x lop3 
for Re = 150 and t, = (T+4.24413) 5.2187 x lop4 for Re = 800. At T = 0, the 
maximum value of 7 is 7.5 m-l s-l and of 6 (for fully polarized case) is 4.85 m2 s-l. The 
dimensions of 7 and 5 remain the same throughout the paper and are not repeated. 

2-2 
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3. Coupling between meridional flow and swirl 
The evolution equations for the meridional flow 7 = wo/r  and swirl < = ruo are 

where D/Dt is the material derivative following a particle in the meridional flow, and 
$ is the meridional stream function. 

From (18a) it is clear that 7 of a fluid particle is conserved in an inviscid swirl-free 
flow. The first term on the right-hand side of (18a) arises from the coupling between 
meridional flow and swirl. To physically interpret this term, consider the angular 
velocity (8 = uo/ r )  along a vortex line. If s is the arclength along the vortex line (s 
increases in the direction of vorticity), then 

For an axisymmetric flow, the last term on the right-hand side vanishes. Since the 
vortex line lies on a vortex surface defined by = to, (1 5) ,  the above equation becomes 

The coupling term is thus 

This equation highlights the physics behind the coupling term. Namely, it expresses the 
twisting of vortex lines confined to the surface 5 = go. A vortex line on this surface has 
6 = f J r 2 .  Consequently, 181 increases where the vortex line curves inwards (ar/as < 0) 
and decreases where it bends outwards (ilr/as > 0). Hence there is an exchange between 
meridional and azimuthal vorticity where the 5 = to surface is not parallel to the z-axis. 
This has a profound effect on the evolution of 7, for 7 is subject to both material 
transport as well as generation and destruction by twisting of vortex lines. Our vortex 
rings propagate either up or down along the z-axis. Which direction a given ring moves 
in depends on s,/ = sgn(S7drdz). s7 is positive for ascending and negative for 
descending rings, and does not change during the evolutions. The propagation 
direction defines the ring'sfront and rear. From (19) we then at once find that 7' is 
destroyed in the front and generated in the rear by the coupling term (figure 4). This 
effect increases with the magnitude of f and hence with the degree of polarization 
(1 -2) .  
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FIGURE 4. Schematic to show the generation of 9 via the coupling term for a right-handed ring. The 
projection of a vortex line in a meridional plane is shown on the right. Irrespective of the polarity of 
the ring, negative q is generated in front and positive q is generated at the back of the vortex ring. 

4. Equations for the interaction of polarized components 
As discussed above, axisymmetric flows are best analysed in terms of E , T ,  and $. We 

therefore also consider the polarized components of these variables. This requires 
slightly different projection operators, because the projection operators defined in 0 2.2 
are for a three-component vector and cannot be used directly here. The new projection 
method is based on the expansions 

From the orthogonality properties of J1 and of exponential function, it follows that 

The right- and left-handed components of 6 and 7 can then be expressed as 

ER = r C ci, r*) Jl(qj r )  eikZ, EL = - r C dj, (%) Jl(qj r )  eikz, 
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Now, using the same procedure we can obtain projections of any two terms from the 
equations for f and 7. For the right-handed components, these equations become 

.c ? - Y N  c 

I I1 

\ - / -  - / 

III IV 

/ 

V VI 

Here P+ and P- are the operations defined in (22)-(24); Go is replaced by ct and 
by c7, where c7 and are the Bessel-Fourier space representations of the top and 
bottom terms in (25) (before taking Bessel-Fourier transforms, the top term is 
multiplied by r and the bottom term is divided by r ) .  Written in the above form, (25) 
allows separation of terms due to interaction of polarized components from those in 
the f -  and 7-equations. Physically the terms in (25) are: (I) the self-evolution of T~ and 
cR, (11) advection of vR and g R  by left-handed velocity, (111) generation of vL and tL due 
to evolution of qR and C R ,  (IV) generation of rR and 5, due to evolution of y L  and tL, 
(V) coupling between the left- and right-handed swirl and meridional flow, and (VI) 
viscous decay. Evolution equations for tL and qL can be obtained from (25) by 
interchanging R and L as well as P' and P-. 

5. Numerical simulations - observations 
5.1. Persistence of polarization 

The kinetic energy (E) ,  enstrophy (2) and helicity ( H )  can be decomposed into right- 
and left-handed contributions : 

P P 

E = ER+EL,  ER = uR.uRdV, EL = uL*uLdV, J J 

H = H R + H L ,  HR = uR-mRdV, HL = uL*mLdV. (26 c) s s 
Here integration is over the entire three-dimensional domain. Integrals of the cross- 
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FIGURE 5. Evolution of kinetic energy ER/(ER + EL) (solid line), enstrophy ZR/(ZR + Z,) (dashed line), 
and helicity H,/(H,-H,) (dotted line) for Re = 800 cases E (A, x = 0), D (0, x = 0.5) and C 
(0, x = 0.75). 

terms like (uR-uL) vanish due to orthogonality of the right- and left-handed fields. For 
unpolarized flows, ERIE = Z,/Z = H R / ( H R - H L )  = 0.5. During the evolution of our 
initially polarized rings, these ratios remain nearly constant; only 12 YO variation is 
observed in Re = 800 cases (C, D and E) shown in figure 5 ,  and 5 % in Re  = 150 cases 
F-J (not shown). The evolutions of these quantities are uneventful slow decays as 
shown in figure 5 .  Thus, isolated polarized vortical structures retain most of their 
polarization. 

The degree of polarization (1 - x) is initially constant, but becomes spatially 
non-uniform during the evolution. The spatial variations can be represented by 
R,(r, z )  = log, (lmR\/lmL\), which is zero where both the polarized components are 
equal in magnitude, positive where the right-handed component dominates (i.e. right- 
polarized) and negative where the vorticity is left-polarized. R ,  is shown in figure 6 at 
late times in the evolution of cases D and E. We note that left-handed-dominated 
regions form, even in case E where the initial ring was completely right-handed 
(figure 6b). However, the ring core remains right-handed. Near the axis strong right- 
handedness can be see in the wake of the vortex. In the low-Re cases, the results are 
similar, except that a left-handed-dominated region (i.e. R, < 0) is not seen for the fully 
polarized case. 

5.2. Unpolarized reference cases 
Figure 7(a, b) shows the evolution of w, (or Iml) in unpolarized rings. In case A 
(Re = SOO), the ring shows the typical head-tail structure observed by Shariff et al. 
(1988). In case B (Re  = 150), the tail is much thicker and not clearly separated from 
the head. Maxworthy (1972) has proposed a mechanism for tail formation involving 
diffusion of vorticity across the vortex bubble and its subsequent detrainment near the 
rear stagnation point. The thicker tail formed at lower Re is consistent with this 
explanation. However, tail formation in inviscid simulations (Shariff et al.) suggests 
that there is an additional inviscid mechanism. 

In analysing axisymmetric flows without swirl, 7 = w g / r  and the meridional stream 
function ~ in a frame moving with U,, (3 l), are very informative. This is because 7 is 
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FIGURE 6. Spatial distribution of polarization (R, = log, (lwEl/lwLl)) for Re = 800 cases. Only a part 
of the domain is shown. Regions where 101 < 10-3~peak are excluded. (a) Case D (x = 0.5); contour 
levels (min., max.) with increment = 1 are: T = 40 (-5, lo.%), T = 80 (-4.65, 9.4). (b) Case E 
(x = 0); contour levels with increment = 1 are: T = 40 (- 1.51, 11.8), T = 80 (-5.51, 9.55). Thick 
lines are overlayed contours of 1 0 1 :  T =  40 (0.15, O M ) ,  T =  80 (0.08, 0.48). In this plot we use 
periodicity in z-direction to get tail region behind the head. 

advected with the meridional velocity in an inviscid, swirl-free flow, (18a). If, 
moreover, the flow is steady in some reference frame, then q = q($). In figure 8, 
contours of 7 and $ are overlaid. In the high-Re case (A) these contours are nearly 
aligned in the core and resemble boundaries of steady inviscid Norbury vortices 
(Norbury 1973). Hence Re is sufficiently large for the deformation of the ring core to 
be negligible on a convective timescale (turnover time T,, defined as that required for 
a particle at the core radius a to go around the core once, is 0 ( 6 x / w , ) ;  a and w, are 
defined in (13)). The contours in figure 8(a) appear after approximately IlOT,. This 
alignment of wo and @ was also observed by Stanaway et al. (1988). In the low-Re case 
B, the @- and q-contours soon become misaligned, and the core cross-section is, 
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FIGURE 7. (a) wo contours for unpolarized Re = 150 case B. Only a part of the domain is shown. The 
peak values are: T = 0 (15), T = 12 (0.95), T = 30 (0.374), T = 60 (0.171), T = 96 (0.092). (b) wo 
contours for unpolarized case A (Re = 800). Only a part of the domain is shown. The peak values 
are: T = 0 (15), T = 12 (4.09), T = 40 (1.42), T = 80 (0.755), T = 150 (0.416). In each frame, the 
contour levels are equispaced. 

consequently, very different from the inviscid steady solutions of Norbury; see figure 
8(b) (shown after approximately 70TJ. Thus, diffusion of vorticity at very low Re can 
lead to a misalignment of $- and 7-contours, i.e. core deformation by advection. 

The 7-contours show the location of viscous vorticity annihilation. To demonstrate 
this, note that the z-axis is a material line that can be closed at infinity into a material 
circuit C encompassing the entire meridional plane. Thereby (Batchelor 1967, p. 269) 

= - v lc (V x o) .dZ 
dt 

dz=-2vJ + m  

dz=-2~1 ;1q l  dz; (28) 
-m r=O r=O 

here we have used L’Hospital rule (i.e. wA(O,z) = 0, limr+o(wo/r) = lim,,,(aws/~r)). 
Figure 8 shows that the most intense annihilation of roccurs near the front stagnation 
point, with the least in the tail. Note that (28) is valid irrespective of whether the vortex 
has swirl or not. 

5.3. Structure of polarized rings 

Figure 9(a) shows the evolution of 101 contours for case E (x = 0, Re = 800). Upon 
comparison with case A (x = 1.0, Re = 800, figure 7b), many differences are readily 
discerned. The axial motion is drastically reduced in case E and the head-tail structure 
is very different from that in case A. There is an axial vortex near the axis and an 
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FIGURE 8. 7 (dashed lines) overlaid on streamlines (solid lines) in a frame moving with the centroid 
velocity defined in (31) for (x = 1) cases A and B. Only a part of the domain is shown. (a) Re = 800, 
T = 150. (b) Re = 150, T = 96. Note the misalignment of contours in the low-Re case. Distribution 
of 7 on the axis clearly suggests that most of the circulation annihilation occurs near the front of the 
ring. 
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FIGURE 9. (a) 101 contours for case E (x = 0, Re = 800); only a part of the domain is shown. The peak 
values are: T = 0 (15), T = 12 (4.32), T = 40 (1.57), T = 80 (0.84), T = 150 (0.44). (b)  101 for case 
J (x = 0, Re = 150) at T = 96; the peak values is 0.132; only a part of the domain is shown. 
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FIGURE 10. (a) E and 7 for case E (x = 0, Re = 800) at T = 150. Contour levels (min., max., increment) 
are: 6 (0.0355, 0.497, 0.0355), 7 (-0.048, 0.244, 0.021); (6) the same for case J o( = 0, Re = 150) at 
T = 96; 5 (0.038, 0.233, 0.02), 7 (-0.0009, 0.057, 0.004). (c) 101 for case C (x = 0.75, Re = 800) at 
T = 150. Only a part of the domain is shown. 

outward movement of the ‘head’. At late times, in case J (x = 0, Re = 150, figure 9b), 
the head and tail are fused together, and it is difficult to infer a ring from the 101- 
contours. In both cases E and J, the ring structure seems enigmatic in terms of 101. 

To analyse the ring structure, we examine 6 and 7. The contours of these quantities 
are shown in figure 10(a, b) and correspond to the last frame of figure 9(a) and figure 
9(b). At high Re, it is clear that the head is part of the original ring. The axial vortex 
seen in the 101 plots is in the region where the &contours are close and nearly parallel 
to the axis (at the axis w, = wg = 0). Here, 7 is large, implying a strong azimuthal 
turning of vortex lines. Thus, the vortex line geometry is quite complex in this flow 
(figure 11 a). A vortex line trace (figure 1 1 b) on a low [-contour (a cross-section of an 
axisymmetric vortex surface) near the head moves out of the plane first radially 
outward, then axially downward, then radially inward, and finally changes the 
azimuthal direction into the plane and moves axially upward. The strong axial vortex 
is located where the vortex lines spiral upward along the axis. This axial vortex also 
appears at higher x; e.g. in figure 1O(c) an axial vortex, apparently not joined to the 
ring, is clearly visible. At low Re, [ and 7 are more diffused; see figure lO(b). Note that 
[-contours clearly show a ring, again not obvious from 101 plot in figure 9(b). As in 
case B there is no clear head-tail structure. 
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FIGURE 1 1. Vortex line for fully polarized case E (x = 0, Re = 800) at T = 150. (a) A vortex line 
starting at S with trace continued for 5 rotations around the symmetry axis. Note the axial vortex 
and twisting of vortex lines near the axis. The vortex line does not close for the trace shown and is 
perhaps surface filling. The cross-section of the vortex surface to which this line is confined is shown 
by thick dashed line. (b)  The same vortex line as in (a) starting at S is traced up to point E. The thick 
line shows the cross-section of the vortex surface. Arrows are shown only in the first half of the trace 
for clarity. 

5.4. Topological changes via head-tail formation 
When w, = w, = 0 and wo =+ 0, any closed curve in a meridional plane is the cross- 
section of a toroidal vortex surface. For a polarized ring, however, only certain curves 
(namely the &contours) represent toroidal vortex surfaces (1 6). All polarized 
simulations initially have the same axisymmetric vortex surfaces (figure 3), only the 
magnitude of 6 differs. The temporal evolution of ,$ is shown in figure 12(a) for case 
E. The initial peak in 5 corresponds to a closed circular vortex line C,. Since initially 
there is only one peak in 6, all other vortex lines spiral around C,. Breakup of closed 
contours by the formation of a new [-peak implies that some vortex lines will no longer 
spiral around C, and the original vortex core. This requires that vortex lines must have 
been cut and reconnected at a saddle point in c-contours. Owing to axisymmetry, this 
saddle point also represents a circular vortex line. This reconnection is seen even in 
low-Re cases and is particularly clear for high x (figure 13 a, b), because the two &peaks 
separate quicker due to the faster axial motion. Note that these topological changes 
cannot be inferred from the lol-contours (e.g. figure 1Oc). In fact, the reconnection 
occurs at an entirely different place than one might guess based on figure lO(c). 

These topological changes represent a new type of vortex reconnection because here 
the reconnecting vortex lines are locally parallel rather than antiparallel as in previous 

FIGURE 12. Evolution of polarized components for case E (x = 0, Re = 800). Only a part of the 
domain is shown: the minimum and maximum values are: (a) T = 10, tL (-0.286, 0.067), 5, (0.196, 
2.742), 5 (0.175, 2.456); T=40,  EL (-0.272, 0.0627), 5, (0.106, 1.478), 5 (0.08, 1.21); T =  80, 
~L(-0.276,0.07),~R(-0.0067, 1.06),[(0.063,0.7846). (6) T =  10, ?,(-0.069,0.212), rR(-0.065, 
1.936),7(-0.086,2.146): T~40,~~(-0.12,0.104),~,(-0.029,0.503),~(-0.049,0.605)~ T = 8 0 ,  
yl, (-0.139, 0.066), 7, (-0.038, 0.296): 7 (-0.069, 0.294). In each frame, the contour levels are 
equispaced. 
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studies (Melander & Hussain 1988, 1989; Kerr & Hussain 1989; Kida, Takoaka & 
Hussain 1989, 1991). In the terminology of magnetic reconnection (Greene 1988), the 
previous studies considered an X-point reconnection (i.e. the vorticity at the point of 
reconnection vanishes), while the configuration here is an 0-point (i.e. reconnection 
along a circular vortex line); also see Melander & Hussain (1994). Similar reconnection 
would occur in the simulations of Grauer & Sideris (1991) and Pumir & Siggia 
(1992a, b), had they considered the Navier-Stokes equations, rather than the Euler 
equations where reconnection is impossible. 

5.5. Evolution of polarized components 
The evolutions of polarized 5 and q are shown in figure 12(a, b) for case E (x = 0, 
Re = 800). Since CL is zero initially and remains small throughout the evolution, the 
contours of CR are very similar to those for E. Most of the generated CL is negative and 
concentrated in the core. Thus, the total 6 in the core is smaller than tR. As a result, 
the coupling term is reduced compared to that due to ER alone. Therefore, the 
generation of tL tends to reduce the q generation and hence further generation of qL. 
Likewise, the 7,-contours are very similar to 7-contours since rL remains small 
throughout the evolution. The most interesting aspect of the polarized dynamics is the 
formation of left- and right-handed sheets outside the core; see yL and qR in figure 
12(b). These sheets are formed in a spiral pattern next to the core ( T  = 10). Then they 
gradually move away from the core and towards the axis (T  = 80). In the process they 
increase in strength and establish the axial tail vortex. The two sheets in qL are parallel 
and separated by approximately a third of the sheet thickness; y R  has a peak on the 
negative rL sheet, but away from the negative y L  peak. This causes significant spatial 
variation of local polarization. 

The evolutions of polarized 5- and 7-components for case D (Re = 800, x = 0.5) are 
shown in figure 14(a,b). The &components evolve similarly to those in case E. 
However, the new vortex formed by reconnection is clearer at T = 40 and is well 
separated from the head at T = 150 due to the faster axial motion of the head. The 
head retains its original polarity, but the tail vortex has right-handed polarity near the 
axis and left-handed away from the axis. The evolution of 7 also shows an additional 
feature not see in case E. Namely, the y L  and qR sheets both collapse onto the axis 
(figure 14b). The qR sheet reaches the axis first followed shortly afterwards by the qL 
sheet. Thereby the vortex dynamics of the axial vortex becomes qualitatively similar to 
the core dynamics described in Melander & Hussain (1993), except for the additional 
effect of having a nearby vortex ring. 

5.6. Decay of circulation 
The annihilation of circulation (0 is controlled by the q-distribution on the axis (28). 
Since fully and partially polarized rings feature generation of 7 on the axis as part of 
the axial vortex, r should decay faster than in the unpolarized ring. The evolution of 
the decay constant - D, = (dr/dt)/T (figure 15 a, b) shows that this is indeed the case. 
At any given instant maximum D, occurs for a different value of x. Initially x = 0 has 
maximum D,, but later it is maximum for higher values of x. In the large time limit, 
D, vanishes as all cases lead to a Stokes ring in their final decay (Phillips 1956). 

Two competing effects determine D, : (i) generation of 7 on the axis by the coupling 
term, and (ii) the length of the tail as controlled by the axial motion of the head. The 
first increases with increasing degree of polarization while the second decreases. Hence, 
we expect the D, to be maximum for an intermediate x as soon as a tail forms. D, is 
maximum somewhere in the range 0.125 < x c 0.5 for the low-Re cases (figure 15b). A 
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FIGURE 13. Breakup of vortex surfaces (&contours). (a) Case C (x = 0.75, Re = 800) at T = 150 
(only a part of the domain is shown). (b) Case F (x = 0.75, Re = 150) at T = 96. 

similar trend is observed in the high-Re cases (figure 15a). Note that D, (x = 0.5) is 
much higher in the high-Re case than in the low-Re case. This is because the axial 
motion of the head and q-generation control the viscous annihilation. 

5.7. Motion of the head 
Near the axis wo is small, wo K r. Knowing that the tail is close to the axis, we conclude 
that wg is mainly associated with the head. The location of the head in the meridional 
plane is therefore well described by 

The advance of the head is traced in figure 16(a, b). At all times, the axial motion of 
the head is in the upward direction. The radial motion is, however, more subtle. Early 
in the evolution, when the tail forms on the axis, r, decreases slightly. Later when the 
annihilation of wo sets in, the head begins its outward journey. In the final viscous decay 
of the rings, r, will increase as (44;. This explains why r, is farthest from the axis in 
the low- Re simulations. 

The motion of the head has an interesting dependence on the initial degree of 
polarization (1 -x). As expected, the axial ascent slows down considerably with 
increasing polarization. However, the radial motion again holds a surprise, for one 
would at first assume that the centrifugal force associated with a higher swirl content 
results in a more rapid radial motion. Figure 16(b) tells a different story. Namely, that 
the partially polarized ring (D) has the fastest radial motion. The reason is that the 
annihilation of wo is highest in case D because of its very long tail. 
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FIGURE 15. (a) Evolution of -D, = (dT/dt)/T for Re = 800 cases A (0, ,y = l.O), D (0, ,y = 0.5) 
and E (A, x = 0). (b )  Evolution of -D, for Re = 150, case B (0, x = l .O), F (D, x = 0.75), G (0, 
x = 0 . 5 ) , H ( ~ , ~ = 0 . 2 5 ) , 1 ( + , ~ = 0 . 1 2 5 ) ,  J ( A , x = O ) .  
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FIGURE 16. (a) Centroid locations ( z ,  and x, defined in (29)) at T = 10, 20, 50, 80, 100 for Re = 150 
cases B (0, x = l.O), G (A, x = 0.5), J (0, x = 0). (b) The same for Re = 800 cases A (0, ,y = 1.0), 
D (0, x = 0.5) and E (A, ,y = 0). 

6. Analysis of propagation velocity 
6.1. Force-balance argument 

The effect of tangential flow in a curved vortex filament is reported in the literature 
(Saffman 1970; Widnall et u1. 1971 ; Moore & Saffman 1972). All predict reduction of 
the propagation velocity U p .  Moore & Saffman calculate U, by balancing forces acting 
on an element of the filament. Two forces act away from the filament's centre of 
curvature; namely, the centrifugal force due to the tangential flow and the Kutta lift 
force. A balance is maintained through inward-acting forces, which are independent of 
both U p  and the tangential flow. Consequently, the Kutta lift force must be smaller in 
the presence of tangential flow. Since the Kutta lift force is proportional to Up,  they 
conclude that U p  must be smaller. Unfortunately, this argument only holds for thin 
rings ( a / R  < 1) as it is based on asymptotics valid to O ( ( U / R ) ~ ) .  

6.2. Propagation of Saffman's vortex centroid 
In a study of viscous vortex rings, Saffman (1970) defined the vortex centroid of a 
general three-dimensional vortex as 
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FIGURE 17. (a) Evolution of propagation velocity defined in (31) for Re = 150 cases B (0, x = l.O), 
F(~,~=0.75),G(O,~=0.5),H(x,~=0.25),I(+,~=0.125),J(~,~=O).(~)Thesamefor 
Re = 800 cases A (0, x = l.O), D (0, ,y = 0.5) and E (A, x = 0). 

Case JuirdA From (33) From (31) Error (%) 

B 0.0 0.2581 0.2624 1.64 
F 0.043 1 0.2517 0.2559 1.64 
G 0.2276 0.2240 0.2292 2.27 
H 0.7600 0.1443 0.1473 2.04 
I 1.2771 0.0669 0.0690 3.04 

TABLE 2. Comparison of estimated and observed U p  for Re = 150. Per cent error is defined as [lo0 (col. 
k o l .  3)/(col. 4)]; (44; in (33) is estimated from equating coefficient of (13) with that of Oseen 
solution, i.e. 1 /(4vt)T = (0, n/J32. 

J 2.1110 -0.0579 -0.0573 -1.05 

where I = $p Y x o d V is linear impulse and integration is over the infinite volume. In 
our case V is the (finite) computational domain. Since I is conserved in the sufficiently 
large domain used here, the basic assumption in derivation of this formula is met. For 
the axisymmetric case, (30) reduces to 

U p  = - [V x (u x o)le r2 z dr dz (31) "S I 

- - Uunpolarized + s? (c) r3 z dr dz. 
I a2 r4 

The first two terms in the integrand are identical for rings with and without swirl. The 
third term is unique to rings with swirl; note that it is exactly the coupling term 
discussed in 53. Following Saffman's analysis for thin viscous rings with swirl, we 
obtain 

Since a closed-form solution of ue(r, f) is not known, we compared this prediction at the 
initial instant with U p  from (31). This comparison, shown in table 2, indicates good 
agreement for all x. 
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FIGURE 18. q and coupling term at T = 10 for case G (x = 0.5, Re = 150); contour levels (min., max., 
increment) are: q (-0.02, 0.45, 0.05), coupling term (-0.02, 0.016, 0.0045); the thick line on the 
coupling-term contours is 7 = 0.2. Only a part of the domain is shown. 

The time evolution of U p  from (31) is shown in figure 17(a, b). The trends are similar 
for both Re values. As x decreases, U p  decreases since the effect of swirl increases, and 
for x = 0, negative U p  is observed initially! This is not inconsistent with the positive 
linear impulse since the ring (say, located at the peak wo) still moves forward, but the 
centroid moves backwards due to large material generation of 7 in the back half of the 
vortex (discussed in 53). 

6.3. Coupling between meridional flow and swirl 
To predict U p  for rings with swirl, force balance arguments are tractable only for 
thin rings, making prediction for thick rings difficult. Our explanation of U p  reduction 
in rings with swirl due to generation of 7 (and hence wo) at the back, i.e. opposite to 
the direction of self-induced ring motion and destruction of 7 at the ring front is 
supported by a plot of the coupling term and 9 in figure 18. The ring would move in 
the positive z-direction by self-induction. The positive and negative contours of the 
coupling term in the lower and upper halves of the 7-distribution denote 7-generation 
and destruction, respectively. As discussed in 83, the coupling term is higher for higher 
degree of polarization. Thus, with decreasing x, generation/destruction of 7 due to the 
coupling term becomes higher, causing a larger decrease in Up.  

Another feature of these contours is that there is generation of 7 near the axis. This 
implies that for rings with swirl, 7 appears near the axis not only due to diffusion and 
advection, but also because of generation there. Since near the axis u, - r,  this gives 
E2 - r4 and therefore the coupling term (1 /r4)  a($)/dz - O( 1) on the axis. Recall that 7 
on the axis leads to circulation decay ; faster circulation decay reduces the self-induced 
velocity of the ring, as is clear from the slower axial motion of low-Re cases in figure 
16(a, b). 

6.4. Hill's spherical vortex with swirl 
Shariff & Leonard (1992) mention that, contrary to thin rings, Hill's spherical vortex 
would move faster when possessing weak swirl : ' The force balance argument does not 
apply for such a thick core and the speed of translation of Hill's vortices with small 
swirl is actually larger than in the swirl-free case' (emphasis is ours). Material 
generation of 7 in the back half of the core should, however, cause a reduction of U p  
for polarized rings of all a/R,  including Hill's spherical vortex, contrary to Shariff & 
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FIGURE 19. For caption see facing page. 
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Leonard's claim. Numerical results (not shown here) also support our argument. To 
further check our claim we analyse Moffatt's (1969) solution of Hill's spherical vortex 
with swirl. In spherical coordinates, the stream function is 

where J is the Bessel function of first kind, a is a swirl parameter, A is a constant, a 
is the radius of the vortex, and h is given as wf, = hr for the zero-swirl case. In the limit 
a: + 0, @ is exactly that for Hill's vortex without swirl. Moffatt showed that matching 
this solution with the irrotational flow for R > a requires that h/a2 = -AJ;(aa) and 
U = -$aaAJ;(aa), where U is the speed of vortex propagation relative to the fluid 
at  infinity 6.e. Up) .  Thus, 

, 3 u . - - -  
sin (aa)) ~4 - cos (aa) + ~ - 

sin (aR)) 
cos (am +- 

and 

3aUsinN- Racos(aR)+sin(aR)) 

For small swirl, a: 4 (l/a), expansion yields 

wo = 45 usinii(a ( )('""). 1 -fa'u') 3 30 

Therefore, the circulation r for this vortex is 

Thus, for Hill's vortices with the same r, we obtain 

(37) 

Clearly, the translation velocity of Hill's vortex also decreases. Note that for the case 
of zero swirl (a = 0), we recover the translation velocity for the swirl-free Hill's vortex 
given in Batchelor (1967, p. 526) by replacing r = :ha3. Surprisingly, (39) also appears 
in the little-known, but comprehensive, paper on vortex rings with swirl by Hicks 
(1899), which was unknown to the authors until after the submission of the paper. A 

FIGURE 19. (a)  Terms of polarized evolution equation (25) for [ and 150 case J (,y = 0) at 
T = 2; the (min., max.) values are: 4 Term I(-0.307, 0.416), )I Term I1 (-0.14, 0.167), 7 Term I11 
(-0.141,0.113),  term 1V (-0.029,0.03), qTerm V (-0.036,0.052), Sum ofqTerms 1-V (-0.425, 
0.41), [Term1 (-0.413, 0.462), [TermII (-0.144, 0.1386), [TcrmIII (-0.078, 0.1176), ETermIV 
(-0.021, 0.017), 6 Term V (-0,018, 0.03), Sum of [ Terms I-V (-0.266, 0.34); the thick lines on 
contours of 7-equation terms are 7 contours 0.05 and 0.15, the thick lines on contours of [-equation 
terms are [contours 0.05, and 0.15. ( h )  Term I and sum of Terms I-V in 7 (25) for case J (Re = 150, 
x = 0) at T = 86; the peak values are: Term I (-0.00072, 0.00088), Sum (-0.000696, 0.000716); 
thick lines are r-contours. 

for Re 
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FIGURE 20. Evolution of axial dipole moment of Terms I (O), I1 (a), I11 (O), IV ( x) ,  V (+), and 
their sum (a) in (25): U, = WZ, where U is defined in (40c) and n, is the z-component of n defined 
in (40h).  (a) T~ for case J (2  = 0, Re = 150); (b) .&, for case J ;  (c) qR, for case G (x = 0.5, Re = 150); 
( d )  tR, for case G;  (e)  T ~ ,  for case B (x = 1.0, Re = 150). 
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referee pointed out that Shariff & Leonard considered rings with the same h value, 
which is inappropriate for comparison between rings with the same r value; our 
simulations as well as the theory assume the same T value. 

6.5. Interaction between polarized components 
We find another explanation for U p  reduction by analysing the terms in (25). Figure 
19 (a)  shows the terms I-V as well as their sum for the right-polarized case J at an early 
time in the evolution. As expected, the self-evolution (I) is dominant. However, 
advection by left-handed velocity (11) and transfer to the left-handed field (111) are also 
significant. We make an important observation here : namely, that all terms exhibit a 
'dipole-like' structure when plotted in the meridional plane. This dipole-like structure 
is seen throughout the evolution. As an illustration, we show the contours at T = 86 
in figure 19(b). 

The dipole-like structure helps us extract the propagation velocity associated with 
each term in (25). To see this, consider the distribution, for example a Gaussian, of a 
scalar quantity f with a single peak in the ( r ,  z)-plane. Suppose f is steady in a frame 
moving with an unknown velocity U, then af/at is a dipole-like structure in the ( r ,  z)- 
plane. Moreover, af/at+ U - V f =  0. Knowledge of i3f/i3t andfreadily allows us to find 
U. By fitting our data (e.g. with tR as f and term I as af/at) to this simple advection 
equation we obtain the propagation velocity associated with each term in (25). The 
fitting procedure is described in the next paragraph. 

In order to focus on the main peak, which is associated with the head, we weight the 
terms byf4. After adjusting for the mean increase or decrease inf, we calculate a unit 
vector fi  and a magnitude U for the propagation velocity. The explicit fitting is then 
given by 

I , \ - - -  ., , I , , . _ _ *  8 , 
\ * _ _ _ - '  I 

- - - - - - -  
, - - _ -  , .____- 

17 Term sum 

M = f4(af/at) dA ; n = s("- ) ( r ,  z ) f 4  dA, s at 

where all integrals are over the entire meridional plane. 
As an example of typical trends, we show in figure 20(u-d) the evolutions of the 

6- and ?-terms for Re = 150 cases G (x = 0.5) and J (x = 0). Only the z-direction is 
included as this is the direction of ring motion. We find that the evolution of the fully 
polarized ring is dominated by term I for both 6 and 7 .  However, for the partially- 
polarized case, term I1 is the most dominant 7-term during most of the evolution, with 
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FIWRI: 22. (a)  &, and tL at T = 0 for the x = - 1 .O case K, initially 6, = g R ,  qL = - q,< and y = 0 for 
this case; the peak values (min., max.) are: 5, (0.17, 2.43), q E  (-0.96, 3.72). (b) E and ‘1 at T = 32 for 
the same case to show the generation of 7 due to the coupling term; the peak values are: [ (0.038, 
0.53), 71 (-0.129,0.131). (c)  qL and qR at T = 32 show that negative 7 in front is due to advection of 
q,, by v n  as expected from Term I1 of (25); the peak values are: q,, (-0.082, 0.049), rR (-0.049, 
0.082). Contour levels are equispaced in all. 

terms I and V also being important at intermediate times. For the unpolarized case 
(only 7-terms shown in figure 20e), we find that terms I1 and V are the most important. 
Note that at early times, the sign of term I1 in the fully polarized case is opposite to 
that in the partially and unpolarized cases. This is consistent with the contours of this 
term shown in figure 19(a) for the fully polarized case and figure 21 for the partially 
polarized case (contours for the unpolarized case are similar to those for partially- 
polarized cases and are not shown). Thus, we see that y L  generated by self-evolution 
of qR causes a velocity field that opposes the forward motion of the ring. This is clear 
in the fully polarized case where qL is initially zero. Therefore, all contributions to term 
I1 at later times are due to qL generated by the coupling term. For the unpolarized and 
partially polarized cases, the effect of qL  present in the initial conditions is to move the 
ring forward, and that of the generated y L  is small. Even though y L  and hence left- 
handed velocity is small in the fully polarized case compared to the partially and 
unpolarized cases, its effect on advection of qR is large because the velocity and gradient 
of qR are more aligned than in the other cases. 

From these results, we can provide some general results for constructing models for 
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the evolution of right-handed polarized rings. We find that term IV is always small and 
may be neglected. Term I1 is always important. Term I increases in importance with 
decreasing x and term V decreases in importance. Term I11 is important only at low x. 

The two explanations we have presented for the slowing of polarized rings - one 
based on production of 7 due to the coupling term in (19) and the other on term I1 in 
(25) - are quite consistent, even equivalent. To illustrate this, we consider an academic 
case with x = - 1 .O (such a configuration has also been studied by Grauer & Sideris 
1991 with the different aim of finding a finite-time singularity in the Euler equations). 
In this case, initially wo = 0 and qL = -vR,  C R  = kL (figure 22a).  The coupling term in 
(19) generates negative 7 in front and positive 7 behind as shown in figure 22(b). Owing 
to mutual induction of the positive and negative 7, the dipole moves radially outward. 
The axial motion of the negative and positive 7 (due to curvature) is equal and 
opposite, and therefore cancels. On the other hand, qR and rL would separate since 
they have self-induced velocities in opposite axial directions. But, owing to advection 
by the opposite handed velocity (term I1 in (25) ) ,  they separate in a direction opposite 
to that of self-evolution alone. As a result, we see negative 7 in front (corresponding 
to vL) and positive 7 behind (corresponding to qR) in figure 22, as also inferred from 
the coupling term in (19). Therefore, the generation of opposite-signed 7 in the upper 
and lower halves of the core due to the coupling term in (19) is equivalent to separation 
of polarized components due to advection by the component of opposite polarity. 
Motion in a direction opposite to that of self-advection due to the presence of opposite 
polarity was also observed for wave motion on a vortex of non-uniform cross-section 
(Melander & Hussain 1993). Further, note that dipole formation due to the coupling 
term causes the radially outward motion. This effect, also present in rings, increases 
with decreasing x. 

7. Concluding remarks 
Motivated by our finding that most vortical structure in transitional and turbulent 

flows are polarized, we have developed a new algorithm for solving the vorticity 
transport equation, using divergence-free eigenfunctions of the curl operator in an 
axisymmetric geometry. This algorithm is validated by comparing results obtained 
with independent codes. Since [ and 7 are natural variables for analysing axisymmetric 
vortical flows, we also derive evolution equations for polarized components of these 
variables. 

As a first step in understanding the dynamics of polarized vortical structures, we have 
investigated the evolution of perhaps the simplest isolated polarized structure, namely, 
an axisymmetric ring. We find that polarization is a persistent feature of such 
structures. A polarized ring develops a head-tail structure, where the head is a vortex 
ring, but in contrast to unpolarized rings, the tail is an axial vortex. Such a columnar 
tail is a characteristic feature of polarized vortices and leads to a complicated vortex 
line geometry. Unlike in unpolarized rings, most r-annihilation occurs in the tail. The 
tail increases in strength with (1 - x) and causes faster circulation decay. However, F- 
annihilation with increasing polarization is non-monotonic : the maximum (dT/dtl 
occurs for 0.125 < x < 0.5. This is because increased polarization also reduces the 
length of the tail, thus diminishing the effect of polarization at higher values. 

As predicted by previous studies of vortex filaments with axial flow, we find that a 
ring propagates at a slower rate if polarized. The ring propagation is analysed, and we 
provide two equivalent vortex-dynamics-based explanations - one in terms of the 
coupling between the meridional flow and swirl, and the other in terms of the evolution 
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of polarized components ~ for the observed decrease in U p  with increasing initial 
polarization (i.e. swirl). Unlike force-balance arguments, which apply to thin rings 
only, these explanations are also valid for small ratios of ring to core radii. Also, 
contrary to a recent claim by Shariff & Leonard (1992), these explanations clearly 
suggest slowing down of thick rings with any amount of swirl; we also derive 
analytically such a reduction in U p  for Hill’s spherical vortex with weak swirl. 

The axisymmetric geometry allows us simple access to axisymmetric vortex surfaces, 
which reveal a new type of vortex reconnection distinct from that previously studied 
in an antiparallel vortex tube configuration. In the present case, the reconnecting 
vortex lines belong to the same vortical structure, and the vortex line configuration in 
the reconnection region is O-type with locally parallel lines, unlike the X-type with 
antiparallel vortex lines (Greene 1988). Interestingly, these topological changes are not 
evident in lol-plots, which erroneously suggest reconnection near the head instead of 
at the lower region of the tail where it actually occurs. In a general three-dimensional 
case, one must therefore be very careful in identifying vortex reconnection based on IwI 
surface plots. This study also illustrates that reconnection occurs not only in large-scale 
vortical structures ; topological changes are observed in the tail region, thereby 
suggesting that small scales of a turbulent flow should also be analysed carefully in 
order to accurately ascertain the significance of vortex reconnection. This point 
emphasizes the value of studying the details of reconnection mechanism by DNS (at 
low Re), such an analysis having been criticized as irrelevant for turbulent flows. The 
axial tail vortex develops high gradients of vorticity, demonstrating the direct 
generation of small scales (hence cascade) by the evolution of an isolated large-scale 
(polarized) coherent structure. 

Even though the overall polarization level (defined by the amounts of right- or left- 
handed energy, enstropy and helicity) remains constant, significant variations in the 
local ratio of left- and right-handed vorticity components develop. The head maintains 
its initial polarization, but the tail develops substantial polarization variations due to 
relative axial shift of left- and right-handed vorticity components. The self-induced 
motion of polarized components in the head is in the azimuthal direction, so that 
separation is prevented by the imposed axisymmetry. In the tail, however, differential 
axial motion of the polarized components leads to significant spatial variation of 
polarization. These observations, combined with our earlier studies mentioned in 3 1, 
suggest that without constraining symmetries, the mechanisms leading to spatial 
polarization variations are strong and that the nonlinear generation of opposite 
polarity is weak. The relative importance of different mechanisms (i.e. the various 
terms in (25)) depends on x and also changes in time. 

The present study is but the first step in exploring polarized vorticity dynamics. In 
addition to axisymmetric ring interactions, the effect of polarization on instability and 
transition phenomena when axisymmetry is not enforced in the numerical simulations 
may reveal phenomena of relevance to turbulent flow modelling. Since unpolarized 
structures tend to become polarized in general, the cascade and topology-changing 
mechanisms discussed here may occur frequently in turbulent flows. Idealization and 
further analysis of the configurations of polarized structures observed upon evolution 
of initialiy unpolarized flows will be useful in further developing a physical 
understanding of the dynamics of transitional and turbulent flows. 

The authors thank Wade Schoppa for a careful review of the manuscript and many 
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